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A theory of the mechanics of adhesion between a microsphere and substrate is presented. 
When a force is applied to an elastic body, the deformation depends not only on the 
magnitude of the force but also its location and distribution. Molecular adhesion 
between bodies is a surface force localized to the contact area. In contrast, applied forces 
such as from gravity, flow ficlds, inertia, etc., are distributed over the volume (body 
forces) and/or surface areas. Effects of different types of force systems on deformation, 
particularly when these forces are combined, can influence adhesion The Hertzian 
structural stiffness parameter K does not reflect the effects of differently distributed 
multiple forces. A theory is developed that takes into account simultaneous application 
of the adhesion force and applied forces through the development of a reduced stiffness, 
Kx. The paper also develops an equivalent Hertzian process for the condition of 
adhesion forces alone so that the mechanics of adhesion can be modeled completely by 
Hertzian theory. Illustrations of how adhesion alone is handled and how the reduced 
stiffness behaves are provided using experimental data from compressed, crossed rods 
and from hard particles in static equilibrium with both relatively hard and soft 
substrates. 

Keywords: Microparticles; adhesion; contact and applied forces; contact deformation 

INTRODUCTION 

The first theory of the adhesion of contacting deformable micro- 
spheres to gain wide acceptance was the JKR theory [ I], also referred 
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182 R. M. BFZACH et al. 

to as the JKRS theory [2]. It is an elegant theory that follows a clever 
derivation and is based on the concept of surface energy. Fundamen- 
tally, it relates force and deformation to surface adhesion energy. The 
DMT theory [3] followed shortly after; it takes a somewhat different 
view of how and where the adhesion force acts. More recently, Maugis 
[4], in a more rigorous fashion, applied fracture mechanics to the 
adhesion problem. Assuming that the tensile adhesion stresses act in 
an annulus around the contact area, Maugis obtained a more general 
theory, with the JKR and DMT theories as special cases. A view of the 
relationships between these theories is presented by Johnson [5] .  All of 
these theories apply Hertzian mechanics of contacting spherical 
bodies. All are for static loading and elastic deformation (without 
dissipation) and address the interrelationship between the deformation 
due to an externally applied force (such as a pull-off or separation 
force) and its effect on adhesion. When dealing with adhesion loading 
alone, these theories have been reasonably successful. But when 
externally applied forces (such as inertia forces during impact) act in 
combination with adhesion, agreement with experiment is lacking. 
Horn et al. [6] show that when an applied force compresses a contact 
area, the JKR theory significantly under-predicts the contact radius. A 
reason for the lack of agreement is that Hertzian theory has an 
inherent limitation that arises when applied to the adhesion problem. 
For two spheres in contact or a sphere in contact with a substrate, the 
theory determines stresses and deformations (deflection and contact 
radius) due to a single equivalent resultant force, P. However, the 
theory is not sensitive to the nature, distribution or location of the 
actual force or forces that constitute P. P could be a point force, 
the resultant of a body force, the resultant of a surface force or it could 
be the resultant of a combination of forces (such as adhesion, a sur- 
face force, and weight, a body force). In particular, during impact, 
adhesion acts in combination with an inertial force distributed 
throughout the sphere, a combination of a surface force and body 
force. The mass center deformation of a sphere during impact in the 
presence of adhesion is different from the mass center deformation in 
the absence of adhesion. The nature of such differences is illustrated in 
this paper through the use of an analogy from simple beam theory. To 
rectify the deficiency of Hertzian theory for application to adhesion, a 
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THEORY FOR MICROSPHERE ADHESION 183 

sensitivity to combined adhesion and body forces is introduced 
artificially using the concept of reduced stiffness. 

The model developed in this paper is based on Hertzian mechanics 
to apply to the attachment process of microspheres under the 
combined action of adhesion and an externally applied force. In some 
respects the derivation of the model is patterned after the JKR theory 
but with some specific differences. It leads to a concept of reduced 
stiffness which is explored in detail. The incentive behind this work is 
to explore the problem of attachment in the presence of an external 
force such as an inertial force for applications to microsphere impact. 
Another purpose is to complement and expand on existing static 
models and to add to the body of knowledge of adhesion mechanics by 
taking an unconventional approach. This paper treats the attachment 
phase of particle surface adhesion interaction. Research on the 
problem of removal or separation is ongoing. Removal forces can 
differ from forces that accompany attachment (it is easy to push 
against a flat surface but not so easy to pull on one); removal is 
considered to be a separate problem and not treated here directly. 
Finally, some of the equations and concepts developed in the paper are 
compared with existing experimental data. 

THE CONCEPT OF REDUCED STIFFNESS 

Linear Beam Theory Analogy 

To explore the effects of load distribution and location and to examine 
the concepts of stiffness and flexibility of a microsphere in more 
tangible terms, consider an analogy using static, elementary beam 
theory. Although the analogy is imperfect, it is informative. Figure 1 
shows three loading conditions on cantilever beams. Condition (a) is 
analogous to adhesion alone, (b) to an externally applied force alone 
and (c) is analogous to combined loading. The resultant force on beam 
(a) is F a t  a distance <t from the fixed end. The constant is such that 
0 5 < I: 1 and the tip deflection y is: 
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184 R. M. BRACH et al. 

D 

FIGURE 1 
point force alone and (c) combination of forces. 

Different loading systems on a cantilever, (a) distributed force alone. (b) 

E is Young’s modulus and I is the second area moment of the cross 
section. For loading systems (b) and (c): 

For convenience, let Kb = EIp3 be a stiffness parameter for the beams 
where beam stiffness, k, is defined as force per unit deflection. In case 
(b), for example, the stiffness is k = 3Kb. This is different from the 
stiffness for loading condition (a) and certainly differs for the loading 
system (c) where 

Equation (4) shows that the stiffness for load Y depends upon the force 
ratio F/P. If F is proportional to P then the stiffness, k, is a constant. 
Note also that the presence of F (with the same direction as P )  reciuces 
the stiffness, k,  by increasing the denominator of Ey. (4). Furthermore, 
the stiffness, k,  is a structural parameter that depends on the beam’s 
material through the modulus E, the beam’s geometry through I and L 
and the loads’ positions through L and E .  It will be seen later that 
the equations of Hei-tzian theory contain neither a load position 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
4
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY FOR MICROSPHERE ADHESION 185 

parameter nor a load ratio parameter such as F/P. In fact, this is the 
deficiency or limitation of Hertzian theory that is being rectified 
through the work of this paper. Finally, it is important to recognize 
that stiffness can be computed taking by the ratio of the applied force 
to the static deflection. This plays an important role in interpreting the 
reduced Hertzian stiffness. 

Before proceding, these concepts can be examined further using the 
JKR theory [I]. 

JKR Reduced Stiffness 

One of the basic equations of the JKR theory can be examined to show 
conformance with the above concept of reduced stiffness. Solution for 
the contact radius, a, from JKR theory provides the following 
equation: 

where the “stiffness” comparable with Eq. (4) can be expressed as 

K;P = K / [ 1 + - 2 p  3w7rR + /? + ( _ i ~ ) ~ ]  3w1rR ( 6 )  

Here, P is an externally applied force, w,  is the DuprC surface energy 
constant (specific surface energy) and R is the microsphere radius. The 
quantity WTR has the units of force and so wnRIP can be considered as 
the ratio of an adhesion force to an externally applied force. 
Consequently, K> is a reduced stiffness corresponding to the JKR 
theory. Although the JKR theory demonstrates conformance with the 
concept of reduced stiffness, the theory has been found to provide 
stiffness values well above what is measured experimentally. A 
somewhat different approach is presented in the following. 

THEORY 

Consider a microsphere in static equilibrium under the action of 
adhesion alone against a flat rigid surface as shown in Figure 2a. 
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186 R. M. BRACH et al. 

a) b) 

FIGURE 2 Different loadings and static mass center deflections with the same contact 
radius, aE, for a microsphere. The one on the left represents adhesion alone, where the 
sphere is practically stress free except for the contact region. On the right is for an 
inertial load P, showing an arbitrary cut portion m'. 

Under ideal conditions it has a contact area with radius aE, a 
deflection, 6 E  and resultant tensile adhesion force P E ,  distributed over 
the periphery of the contact circle. It is balanced by a compressive 
force of the same magnitude. Now consider the same microsphere in 
the absence of adhesion and with an externally applied load 
distributed throughout the sphere with an equivalent point force, P, 
that develops the same contact radius, aE and a Hertzian deflection ' , 
6, as depicted in Figure 2b. The adhesion force is a localized tensile 
contact surface force and does not see the same resistance to the 
deformation as seen by a force, P, distributed throughout the body of 
the sphere. The downward deformation, SE, is likely to be significantly 
smaller for adhesion loading than 6 for distributed loading since for 
the former most of the sphere above the contact region is stress free. In 
general, equal forces with different load application points and/or 
distributions will produce different deformations. 

Hertzian theory can be summarized by the following equations: 

The mass center is chosen here as representative of those points in the body away 
from the contact region with deflection 6, corresponding to Hertzian theory [7] and also 
is chosen because it is a convenient point of reference for impact studies. 
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THEORY FOR MICROSPHERE ADHESION 

where a2 = R6 and K (a material constant) is given by 

with rl and r2, the radii of the particle and substrate (for a rigid flat 
substrate surface, R = rl of the microsphere). Equation (7) shows a 
nonlinear, 3/2-power relationship between the external force, P ,  and 
its resulting deflection, 6. In such cases stiffness often is represented by 
a tangent modulus, 

The tangent modulus is not a constant but is proportional to the 
parameter K. It is clear from all of the above equations that Hertzian 
theory is insensitive to the nature, location and distribution of the 
force(s) making up the resultant P.  To establish such a dependence for 
applications to adhesion, two assumptions are made for the conditions 
of combined loading: (a), that a representative, reduced value of the 
stiffness parameter, K, can be found that is a consequence of the 
presence of adhesion and that (b), the process remains Hertzian. The 
reduced value is called the reduced stiffness, KR.  

Reduced Stiffness 

Figure 3 shows three Hertzian deformation curves. The one indicated 
as PI = P(K) with origin 0, has stiffness K and represents the force- 
deformation characteristics of an elastic sphere under the action of a 
compressive, externally applied force in the absence of adhesion. The 
curve indicated as P(KR) has a reduced stiffness KR and represents the 
force-deformation characteristics of a sphere under the combination of 
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188 R. M. BRACH et al. 

Externally 
Amlied 
Fbke Plf 

FIGURE 3 P(KJ  curves represent Hertzidn deformation for stiffness Ki under 
externally applied forces. Positive P is compression; negative P is tension. Point E is 
static equilibrium. 

an external load and adhesion. A third is P(KA, R A ) ,  due to adhesion 
alone and is discussed more fully later. Although this paper does not 
explicitly cover particle dynamics, one of its goals is application to 
impact. A view here is that the curve P(KR) can be used to represent 
behavior during microsphere impact, namely, under uniformly 
distributed inertial loading in the presence of adhesion. The use of a 
body force combined with adhesion permits applications to dynamic 
loads such as from impact, where the equation of motion can be 
written as 

mi+ K R V % S ~ ~ ~  = -fA(a,aE,6,6E) (12) 

wherefA is a function of the problem’s variables, including velocities, 
and is stated here in a general, unspecified form. (See [8] for an 
example of modeling with such an equation). A normal impact with an 
intial velocity less than the capture velocity will be followed by 
damped oscillations (possibly overdamped motion) along the P(KR) 
curve with dissipation eventually leading to static equilibrium at point 
E. This is the same point reached by adhesion alone along P(KA, R A )  
under static conditions. The same force, P(KR),  for example, could 

’Strictly speaking, the force of adhesion alone should not appear on a plot of 
externally applied forces, but it should be understood that P(K,,&) represents the 
resultant force of adhesion. 
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THEORY FOR MICROSPHERE ADHESION 189 

also represent the combination of adhesion and a static gravity load in 
such cases where weight is significant. It is assumed that attachment 
takes place when the deflection, 6, and radius, a, reach zero 
simultaneously. The effects of snap-on [2] are neglected in this paper. 

'The curve P(KR) is now investigated and a derivation is presented 
that leads to an expression for the reduced stiffness, KR. The derivation 
has some similarities to that of the derivation of the JKR equation but 
also some essential differences, discussed later. With reference to 
Figure 3 ,  a continuously varying external load is hypothesized to be 
applied in sequence over a cycle (points 0 to E )  such that: 

1. an external force, P I ,  in the absence of adhesion compresses the 
microsphere against a substrate reaching a deflection (path OB) 
and a contact area with radius a, 

2 .  then the force P I  is relaxed and the effects of adhesion 
simultaneously are introduced, taking the path BD in such a way 
that the contact area and radius, a, remain constant but the center 
deflection drops to 6 at load P and the stiffness changes to KR from 
K and, 

3. the force P is removed to complete a cycle of loading and 
unloading, following P(KR) along the curve from point D to E, 
reaching the state of static equilibrium under adhesion alone (since 
P = 0). 

During the relaxation phase, Step 2, the adhesion force is introduced 
as the deflection decreases from 6, to 6, so work is done by the 
adhesion force, referred here to as Wa, the work of adhesion. From 
conservation of energy, the work done of static forces over the cycle 
0 - B -  D - E can be expressed as: 

The first work term is: 

3The Hertzian process itself is conservative. It is tempting here to include energy 
losses in the process cycle to represent material dissipation, but only work terms that 
affect an idealized process can be considered. 
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190 R. M. BRACH et al. 

The work done over the path DE depends on the function P(KR). This 
function is to be Hertzian but a choice exists on how it is translated to 
the equilibirum point. That is, P = & a ( S  - 6 ~ ) ~ ~ ~  could be used but 
so can P = K R ~ ( S ~ / ~  - 6z2);  both accomplish making the external 
force, P, be zero at the equilibrium point. The latter form is chosen. It 
will be seen later that this results in a better match of the theory with 
experiment. The work relative to an arbitrary point with force Y and 
contact radius a is: 

3 
5 

wDE= - - ~ ~ d X ~ i f ~  -- 

(15) 
+ ( K R & ) ’ / ~ S ; ’ ~ ( P +  KR&S, 3 f2  ) 213 

Path ED is under the conditions where the external force is relaxed and 
adhesion is introduced. Specifically, the conditions are that the force 
changes from PI to P, the deflection changes from 5, to 5, the area and 
contact radius remain constant and the stiffness changes from K to K K .  
The work of the force P is: 

P P  

where, from Eq. (7), dS can be expressed as 

2a2 2a2 
3RP 3RK 

dS = -dP - -dK 

The process from B to D is based on Hertzian theory and Eq. (17) 
maintains the conditions of a body or bodies with spherical contact 
geometry under the influence of compressive forces. Substituting this 
into Eq. (16), using P/K = a 3 / R  and integrating gives: 

2a2 2a5 
WBD = - ( P - P l ) - - - - - ( & - K )  

3R 3 R2 

The surface energy is used as the work of adhesion, W,. To an 
arbitrary point on ED it is -w7ra2 and over the full cycle: 

(19) W, = -w7raE 2 
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THEORY FOR MICROSPHERE ADHESION 191 

where w is the DuprC surface energy constant (specific surface energy). 
The work is negative since the adhesion force has a positive sense and 
the deflection, 6, is decreasing over path BD. Substitution of the above 
into Eq. (13) gives: 

Recall that the process from 0 to B is such that P I  = Ka3/R and that 
from E to D, P = K R ~ ( S ~ / ~  - 6iJ2).  Placing these into Eq. (20) and 
imposing the condition that KR = K when w = 0 determines a 
relationship for KR/K 

_-  KR - I - -  5 ( - 5) ’12 __ 

K 2 9  

This equation provides values of KR, reduced stiffness, for correspond- 
ing values of K, R and aE. Equation (21) can be multiplied by K to 
provide a direct solution for the reduced stiffness. Then, other than the 
constant, the second term on the right hand side can be written as 
(wTR) / (a ; /R)  and has the units of stiffness, N/m2. With reference to 
the earlier discussion of a structural analogy, Eq. (21) does not 
explicitly contain a load position parameter yet it does fulfill the 
condition of being a ratio of a static (adhesion) load to a deflection. As 
such, it does represent the effect of adhesion in reducing the stiffness to 
an applied load. It is conceivable that the right hand side of Eq. (21) 
could go to zero indicating that the reduced stiffness is zero. A way of 
looking at this that as KR-+O, the externally applied force had 
diminishing influence over the particle. Reaching such a limit appears 
unrealistic; if it occurs, it may represent a deficiency in the theory. This 
remains to be examined. 
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192 R. M. BRACH et al. 

As a result of the above assumptions and equations, a microsphere 
that begins contact with a surface at b = 0 under the combined action 
of a uniformly distributed force and adhesion follows the Hertzian 
process P(KR) with a force of: 

KR 3 KR 3 P = K ~ f i S ~ l ~  - K R V % S ~ / ~  = R a  - -aE 
R 

with KR given by Eq. (21). Although Eq. (22) has the 312 power 
relationship of a Hertzian process and a cubic relationship between 
force and contact radius it is not identical (by choice) to a translated 
Hertzian equation. However, as will be seen by comparisons of the 
above with experimental data, this appears to be an advantage rather 
than a deficiency. 

When applied to impact, the above equations indicate that when a 
particle approaches and makes contact, the force will follow the P(KR) 
curve to some arbitrary point C when the velocity becomes zero. Being 
compressed, it reverses direction and if it has enough energy, it will 
rebound from the surface. If it does not leave the surface the 
microsphere will remain attached and oscillate elastically (and 
nonlinearly) while the force varies along the P(K,) curve until the 
kinetic energy is totally damped. It remains attached to the surface in 
static equilibrium, point E on the diagram. 

A question can be raised concerning whether or not the stiffness, KR,  
can be measured or computed directly. One way of computation is to 
use a finite element analysis (see [9] for such an approach on a related 
problem) to determine (KR) for specific for% distributions. It may 
be possible to use the period of a dynamic oscillation to recover 
the stiffness, KR. However, such an approach may not be feasible 
because this is a nonlinear oscillation problem. To provide a 
more comprehensive theory, the deformation process under adhesion 
alone is now considered. 

Adhesion Alone 

An additional assumption is now made, that the process of static 
attachment to a surface by adhesion alone can be represented by an 
equivalent tensile Hertzian process P(KA, R A )  shown in Figure 3 with 
equivalent stiffness, KA, and equivalent radius, R A .  i t  is necessary to 
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THEORY FOR MICROSPHERE ADHESION 193 

use equivalency since the Hertzian process does not adequately 
represent the behavior of a sphere under adhesion loading alone [l]. 
According to the equivalent model, a microsphere proximate to a 
substrate is attracted by adhesion and reaches its deformed static 
condition according to: 

From Hertzian mechanics the work done by a force, P, in going from 
P = 0 (point E )  to P = P E  (see Fig. 3 )  must equal the surface adhesion 
energy. This determines that PE = - ( 5 / 3 ) w ~ R ~  where w is the DuprC 
surface energy constant. Consequently, 

If aE and 6~ are measured independently, then from Hertzian theory 
the equivalent radius can be found from RA = ai/SE and K A  can be 
determined from Eq. (24). Using Eq. (24), Eq, (21) can be rewritten as 

Equations (21) and (25) are expressions for the reduced stiffness. 
JKR theory can be examined for its corresponding values of K A  and 

RA. Equilibrium under adhesion alone occurs when a; = 3wnR2/K. 
Equilibrium occurs under the condition of zero external force; 
substitution into Eq. (24) indicates that this corresponds to 

KA and RA both can be determined using experimental measure- 
ments of both UE and 6E. It would be nice to be able to have an 
analytical method. One way is to use the work of Maugis [lo], who 
extended the Hertzian theory to include large contact radii. He gives 
an expression for the equilibrium deformation, dE: 

KA/Ri  = ( 5 / 9 ) K / R 2 .  
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194 R. M. BRACH el al. 

From Eq. (23), 

Equating these and using Eq. (24) provides individual values of R A  

and KA without the need for experimental values of SE. In fact, a value 
of bE. results. Maugis also developed an equation for the static contact 
radius that can be used to provide a value of aE for use in Eq. (26) 
rather than an experimental value. It remains to be verified if Maugis’ 
equations provide accurate values for applications to adhesion alone. 
They should be an improvement over direct application of Hertzian 
theory, but this topic is not pursued here. 

COMPARISONS WITH EXPERIMENTAL DATA 

Applied Force, Crossed-Rod Experiments 

Horn et al. [6] carried out experiments where contacting crossed rods 
were loaded compressively by an external force, beginning at the static 
equilibrium position. The contact radius was measured as a function 
of force. Although the loads in Horn’s experiments were reversed and 
the rods were pulled apart, only the force and contact radius values up 
the maximum force are applicable and will be used here. First, the 
equations are nondimensionalized both for convenience and because 
the Horn data are provided in such a form. Nondimensional forces are 
Q = 4RP/Kai  and Ql = 4RP,/Ka& The nondimensional contact 
radius is Q = a/uE and the displacement is d = S / ( a i / R ) .  Because the 
process is Hertzian, u2 = RS and so u i  = RSE. Using these, Eq. (5) 
gives for the JKR theory (for comparison): 

From JKR theory, since a; = 3wrR2/K and the pull-off (separation) 
force (PSI = 3wnR/4, then QJKR = P / ( P s ( .  Nondimensionalizing Eq. 
(22) gives: 
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THEORY FOR MICROSPHERE ADHESION 195 

Figure 4 shows Q(a) plotted for JKR theory and for reduced stiffness 
theory with KR = K (straight Hertzian theory), K / 2  and K/5 (chosen 
arbitrarily). In addition, the data of Horn et al. [6],  consisting of P/IPs( 
plotted against a for increasing loads, is plotted. It seems clear that 
Hertzian theory (KR = K )  and JKR theory do not follow the data but 
it does appear that almost all of the data lie between K R  = K / 2  and K/5. 
Note that the form [a3 - 1 rather than (a - 1)3] chosen for Eq. (22) 
and its nondimensional counterpart, Eq. (29), retains the 3/2 power 
relationship, satisfies the equilibrium position condition and follow the 
data quite well. 

A beneficial feature of reduced stiffness theory for microsphere 
contact problems is not only that it can be made to “follow the data” 
but that through KR it includes a dependence on the Duprt surface 
energy constant. So, for applications such as impact simulation, as 
materials change w and K R  change, permitting more accurate 
modeling. Both the reduced stiffness, KR, and the equivalent stiffness 
and radius, K A  and RA, depend on the static equilibrium value of the 
contact radius. Experimental data of others and the expression for K R  
now are examined to get an understanding of some of the trends for 
KR/R. 

JKR 
20 

W 

0 
0.5 1 .o 1.5 2.0 2.5 3 .O 

normalized contact radius, 

FIGURE 4 Comparison of Hertzian, JKR and the reduced stiffness theories with the 
experimental results of Horn et al. [6]. 
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Equilibrium, Hard Particle-Soft Substrate 

Rimai and Busnaina [I 13 report an extensive set of measurements of 
the static equilibrium conditions of microspheres. They include 
contact radius and particle radius measurements of (soda-lime) glass 
microspheres on polyurethane substrates having different values of 
Young's modulus. The particles ranged in size from 1 pm to 60pm. 
One of their findings is that the cube of a CIE is proportional to the 
square of R. This observation and Eq. (21) imply that KR is a constant 
for these materials4. A set of values from their data is chosen for 
examination here because it represents a hard particle in equilibrium 
with a relatively soft substrate. Data are displayed in the Table where 
Eq. (21) was used to determine the values of reduced stiffness. 

Since these experiments involve static equilibrium and adhesion 
alone, the results and Eq. (24) can be used to shed some light on 
the values of the equivalent stiffness, KA and radius, RA. The data 
indicate that KAIR; = 2.7 x 106/R2, an inverse relationship for these 
materials. 

Equilibrium, Hard Particle-Hard Substrate 

Bowen rt ul. [12] measured the static contact radius of glass spheres 
adhering to a silicon substrate for a range of radii. These results 
indicated that the static equilibrium value of u i  was proportional to 
R3I2, that is, R2/ai  = c a .  Their data can be used to determine the 
constant c; using this in Eq. (21) gives: 

This indicates that for glass spheres on a silicon substrate, KR depends 
on R. A typical value of KR, for R = 11.7 pm, is given in the Table. 

As above, information about KA and RA can be learned from the 
experimental data. Equation (24) indicates that KA/R; = 1.03 x 

41n fact, this raises the question about whether KR should be constant. The equation 
from the linear analogy shows that the reduced stiffness can depend on position of the 
load and so it is not inconceivable that K R  may depend on R for spheres. 
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TABLE Typical values of reduced stiffness 

Glass microspheres 
Duprt! Substrate Contact Particle Hertzian Reduced 
energy muferiul radius radius stiffness stiffness 
w, Jim2 aE, w R, w K, Nlm2 Kn, Nlm' 

0.17 soft' 5.5 - 6.8 x lo6 5.9 x 106 
0.17 firm' 5.5 - 74.1 x lo6 73.2 x 10' 
0.62 Si 0.5 11.7 64.0 x lo9 62.8 x lo9 

' polyurethane. 

10I2/R3l2. These results indicate that not only can KR vary with 
particle size but K A  and RA can as well the equivalent stiffness and 
radius. 

DISCUSSION/CONCLUSIONS 

Fundamental differences exist between the derivation of the attach- 
ment model developed above and the JKR model. In both derivations 
an approach is followed that views adhesion being introduced to the 
microparticle-substrate system in the presence of an external 
compressive force. However, in the JKR approach, the potential 
energy of the system is minimized to determine the static equilibrium 
conditions. Here, the work over a cycle is equated to the work done by 
the adhesion force. In the JKR derivation, a linear relationship 
between the external force and deflection is used during the 
introduction of adhesion (path BD, Fig. 3) whereas here the curve is 
determined by a simultaneous variation in the stiffness parameter, K, 
and deformation, 6, according to Hertzian theory (since, along this 
path, contact of spherical bodies is sustained). The JKR theory 
predicts a pull-off (removal) force independent of the material 
properties. Without additional study, the reduced stiffness theory 
does not cover separation or detachment. 

The analysis and modeling of contact adhesion is inextricably tied to 
Hertzian theory, because of theory's simplicity (and consequent 
convenience to the analyst) and its suitability to applications (local 
spherical body contact geometry). An externally applied force together 
with adhesion displays a harmony between the forces, acting in unison. 
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When the applied force compresses a microsphere against a surface, 
the contact area increases and the adhesion force increases; when the 
applied force eases the particle away from the surface, the contact area 
is reduced and the adhesion force reduces. This is the essence of 
the interaction of an applied force and adhesion force through the 
deformation process of the microsphere. To a compressive force the 
presence of adhesion makes a sphere seem more flexible than it 
actually is - establishing the need for using a reduced stiffness when 
studying elastic behavior of microspheres. The JKR theory has a built- 
in reduced stiffness. But when it is nondimensionalized (see Eq. (30)) it 
loses this property and does not follow experimental data (see Fig. 4). 
Calculation of reduced stiffness can require either experimental 
measurement of the contact radius and the normal deflection, the 
ability to calculate these quantities or some combination. Or it can be 
done using finite element methods. 

If it can be assumed that the analysis of reduced stiffness presented 
above is applicable to uniformly-distributed body forces, then its use 
with dynamic problems such as impact and with static problems 
including body forces such as gravity is appropriate. If so, the use of 
the reduced stiffness should permit more accurate simulation of 
microsphere adhesion in combination with gravity (when particle 
diameters become large enough for gravity to be significant) and when 
rebound and attachment occur for particle impact. In fact, the impact 
problem provided motivation for the development of the reduced 
stiffness theory. 

Removal or separation of a particle from a substrate using an 
applied force is another area where the effects of simultaneous loading 
must be considered. This topic needs to be examined and such research 
is ongoing. 

The above work does not deal with the details of the beginning and 
end of contact, when 6 and a are near zero. It certainly is possible that 
particles may not begin or end contact with a zero contact radius, 
a = 0, exactly when 6 = 0. Johnson and Pollock [2] discuss the 
phenomenon of snap-on and snap-off where the adhesion force causes 
the proximate surfaces of the microsphere and substrate to “reach 
out” into or from contact. The exact nature of this phenomenon is 
likely to be material dependent; little theory and few experimental 
results are available. In fact, an answer to these questions may even 
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demand a more rigorous definition of the meaning of contact. The 
relationship of reduced stiffness to this problem remains to be 
examined. 
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NOTATION 

Variables 

a 
E 
F 

I 
K 

f 

K*R 

e 
K h  
k 

m 
P 

R 
ri 
W 
WA 

Q 

W 

a 
d 

contact radius, m 
Young’s modulus (modulus of elasticity), N/m2 
force 
mathematical function 
second area moment of cantilever beam cross section, m4 
Hertzian stiffness parameter, defined in Eq. (2) N/m2 
stiffness constant corresponding to JKR theory 
cantilever beam stiffness parameter, Njm 
beam stiffness (force per unit deflection), N/m 
length of cantilever beam, m 
mass of microsphere, kg 
single equivalent, external point force, N 
nondimensional single equivalent, external point force 
effective radius, defined in Eq. (lo), m 
radius of body i in contact region, m 
work, J 
work of surface adhesion force, J 
Duprt surface energy constant (also, specific work of adhesion), 
J/m2 
nondimensional contact radius 
nondimensional mass center deflection normal to contact 
surface 
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6 
vi 

relative mass center deflection normal to contact suface, m 
Poisson’s ratio for material of body i 
nondimensional constant defined in Figure 1 

Subscripts 

A 
B 
h 
c, D 
E 
0 
R 
S 

conditions of adhesion (alone) 
point on Hertzian process curve P(K), external force alone 
cantilever beam 
point on Hertzian process curve P(KR), combined adhesion and 
external force 
equilibrium point, adhesion alone 
origin of force-deflection coordinate system 
used with K to indicate reduced stiffness 
separation 

References 

[I] Johnson, K. L., Kendall, K. and Roberts, A. D., “Surface energy and the contact 
of elastic solids”, Proc. R. Soc. Lond. A.324, 301 -313 (1971). 

[2] Johnson, K. L. and Pollock, H. M., “The Role of Adhesion in the Impact of Elastic 
Spheres”, J .  Adhesion Sci.Technol. 8(1 l), 1323- 1332 (1994). 

[3] Derjaguin, B. V., Muller, V. M. and Tuporov, Y. P. T., “Effect of contact 
deformation on the adhesion of particles”, J .  Colloid Interface Sci. 53, 314-326 
(1975). 

[4] Maugis, D., “Adhesion of Spheres: the JKR-DMT transition using a Dugdale 
model”, J .  Colloid Interface Sci. 150, 243 (1992). 

[5]  Johnson, K. L., “Mechanics Modeling of Adhesion of Spherical Surfaces”, Proc., 
20th Annual Meeting, Adhesion Soc., Hilton Head, SC, USA, pp. 155 - 156 (1997). 

[6] Horn, R. G., Israelachvili, J. N. and Pribac, F., “Measurement of the Deformation 
and Adhesion of Solids in Contact”, J.  of Colloid and Interface Sci. 115,492 (1987). 

[7] Timoshenko, S. and Goodier, J .  N., Theory of Elasticity, McGraw-Hill, New York 
(1951). 

[8] Brach, R. M. and Dunn, P. F., “Macrodynamics of Microparticles”, Aerosol 
Science and Technology 23(1), 51-71 (1995). 

[9] Quesnel, D. J., Rimai, D. S., Gady, B. and DeMejo, L. P., “Exploring the JKR 
Formalism with Finite Element Analysis”, Proc., 2Ist Annual Meeting Adhesion 
Society Savannah, GA, pp. 290- 292 (1  998). 

[lo] Maugis, D., “The JKR-DMT Transition in the Presence of a Liquid Meniscus and 
the Extension of the JKR Theory to Large Contact Radii”, In: Contact Mechanics 
Raous, M. et al., Eds. (Plenum Press, New York 1995). 

[ l l ]  Rimai, D. S. and Busnaina, A. A., “The adhesion and removal of particles from 
surfaces”, Particulate Sci. and Technol. 13, 249- 270(1995). 

[12] Bowen, R. C . ,  DeMejo, L. P. and Rimai, D. S., “A Method of Determining the 
Contact Area Between a Particle and Substrate Using Scanning Electron 
Microscopy”, J .  Adhesion 51. 191 - 199 (1995). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
3
4
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1


